### Refine

#### Year of publication

#### Document Type

- Preprint (224)
- Article (118)
- Conference Proceeding (7)
- Report (2)
- Doctoral Thesis (1)

#### Keywords

- Kollisionen schwerer Ionen (28)
- heavy ion collisions (22)
- Kollisionen schwerer Ionen (19)
- heavy ion collisions (19)
- Quark-Gluon-Plasma (11)
- Quark Gluon Plasma (9)
- quark-gluon plasma (9)
- equation of state (8)
- QGP (7)
- QGP (7)

- Subthreshold antiproton production in heavy ion collisions (1993)
- We present a RQMD calculation of antiproton yields and their momentum distribution in Ne + NaF collisions at 2 GeV/u. The antiprotons can be produced below threshold due to multi-step excitations for which meson-baryon interactions play a considerable role. In this system the annihilation probability for an initially produced antiproton is predicted to be about 65%.

- Feeddown contributions from unstable nuclei in relativistic heavy-ion collisions (2020)
- We estimate the feeddown contributions from decays of unstable A=4 and A=5 nuclei to the final yields of protons, deuterons, tritons, 3He, and 4He produced in relativistic heavy-ion collisions at sNN>2.4 GeV, using the statistical model. The feeddown contribution effects do not exceed 5% at LHC and top RHIC energies due to the large penalty factors involved, but are substantial at intermediate collision energies. We observe large feeddown contributions for tritons, 3He, and 4He at sNN≲10 GeV, where they may account for as much as 70% of the final yield at the lower end of the collision energies considered. Sizable (>10%) effects for deuteron yields are observed at sNN≲4 GeV. The results suggest that the excited nuclei feeddown cannot be neglected in the ongoing and future analysis of light nuclei production at intermediate collision energies, including HADES and CBM experiments at FAIR, NICA at JINR, RHIC beam energy scan and fixed-target programmes, and NA61/SHINE at CERN. We further show that the freeze-out curve in the T-μB plane itself is affected significantly by the light nuclei at high baryochemical potential.

- Time-dependent Hartree-Fock studies of superheavy molecules (1983)
- The time dependent Hartree-Fock approximation is used to study the dynamical formation of long-lived superheavy nuclear complexes. The effects of long-range Coulomb polarization are treated in terms of a classical quadrupole polarization model. Our calculations show the existence of "resonantlike" structures over a narrow range of bombarding energies near the Coulomb barrier. Calculations of 238U + 238U are presented and the consequences of these results for supercritical positron emission are discussed. NUCLEAR REACTIONS 238U + 238U collisions as a function of bombarding energy, in the time-dependent Hartree-Fock approximation. Superheavy molecules and strongly damped collisions.

- Conserved charge fluctuations are not conserved during the hadronic phase (2017)
- We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.

- Final state hadronic rescattering with UrQMD (2018)
- In this talk we discuss the effects of the hadronic rescattering on final state observables in high energy nuclear collisions. We do so by employing the UrQMD transport model for a realistic description of the hadronic decoupling process. The rescattering of hadrons modifies every hadronic bulk observable. For example apparent multiplicity of resonances is suppressed as compared to a chemical equilibrium freeze-out model. Stable and unstable particles change their momentum distribution by more than 30% through rescattering. The hadronic rescattering also leads to a substantial decorrelation of the conserved charge distributions. These findings show that it is all but trivial to conclude from the final state observables on the properties of the system at an earlier time where it may have been in or close to local equilibrium.

- Medium modifications of the nucleon-nucleon elastic cross section in neutron-rich intermediate energy HICs (2006)
- Several observables of unbound nucleons which are to some extent sensitive to the medium modifications of nucleon-nucleon elastic cross sections in neutron-rich intermediate energy heavy ion collisions are investigated. The splitting effect of neutron and proton effective masses on cross sections is discussed. It is found that the transverse flow as a function of rapidity, the Q_zz as a function of momentum, and the ratio of halfwidths of the transverse to that of longitudinal rapidity distribution R_t/l are very sensitive to the medium modifications of the cross sections. The transverse momentum distribution of correlation functions of two-nucleons does not yield information on the in-medium cross section.

- Black hole production in large extra dimensions at the Tevatron : possibility for a first glimpse on TeV scale gravity (2002)
- The production of black holes in large extra dimensions is studied for Tevatron energies. We find that black holes may have already been created in small abundance in pp collisions at ps = 1.8 TeV. For the next Tevatron run (ps = 2.0 TeV) large production rates for black holes are predicted.

- Evidence for nonhadronic degrees of freedom in the transverse mass spectra of kaons from relativistic nucleus-nucleus collisions? (2004)
- We investigate transverse hadron spectra from relativistic nucleus-nucleus collisions which reflect important aspects of the dynamics - such as the generation of pressure - in the hot and dense zone formed in the early phase of the reaction. Our analysis is performed within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. Both transport models show their reliability for elementary pp as well as light-ion (C+C, Si+Si) reactions. However, for central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV the measured K+- transverse mass spectra have a larger inverse slope parameter than expected from the calculation. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding shows that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - is generated by strong partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.

- Viscosity and the equation of state in high energy heavy-ion reactions (1993)
- Viscous hydrodynamic calculations of high energy heavy-ion collisions (Nb-Nb and Au-Au) from 200 to 800 MeV/nucleon are presented. The resulting baryon rapidity distributions, the in-plane transverse momentum transfer (bounce-off), and the azimuthal dependence of the midrapidity particles (off-plane squeeze out) compare well with Plastic Ball data. We find that the considered observables are sensitive both to the nuclear equation of state and to the nuclear shear viscosity η. Transverse momentum distributions indicate a high shear viscosity (η≊60 MeV/fm2 c) in the compression zone, in agreement with nuclear matter estimates. The bulk viscosity ζ influences only the entropy production during the expansion stage; collective observables like flow and dN/dY do not depend strongly on ζ. The recently observed off-plane (φ=90°) squeeze-out, which is found in the triple-differential rapidity distribution, exhibits the strongest sensitivity to the nuclear equation of state. It is demonstrated that for very central collisions, b=1 fm, the squeeze-out is visible even in the double-differential cross section. This is experimentally accessible by studying azimuthally symmetric events, as confirmed recently by data of the European 4π detector collaboration at Gesellchaft für Schwerionforschung Darmstadt.

- Intranuclear cascade models lack dynamic flow (1986)
- We study the recent claim that the intranuclear cascade model exhibits collective sidewards flow. 4000 intranuclear cascade simulations of the reaction Nb(400 MeV/nucleon)+Nb are performed employing bound and unbound versions of the Cugnon cascade. We show that instability of the target and projectile nuclei in the unbound cascade produces substantial spurious sidewards flow angles, for spectators as well as for participants. Once the nuclear binding is included, the peak of the flow angle distributions for the participants alone is reduced from 35° to 17°. The theoretical ‘‘data’’ are subjected to the experimental multiplicity and efficiency cuts of the plastic ball 4π electronic spectrometer system. The flow angular distributions obtained from the bound cascade—with spectators and participants subjected to the plastic ball filter—are forward peaked, in contrast to the plastic ball data. We discuss the uncertainties encountered with the application of the experimental efficiency and multiplicity filter. The influence of the Pauli principle on the flow is also discussed. The lack of flow effects in the cascade model clearly reflects the absence of the nuclear compression energy that can cause substantially larger collective sidewards motion—there is too little intrinsic pressure built up in the cascade model.