Article 3360B Cellular automata with random initial conditions

Cellular automata with random initial conditions

by
John
from John D. Cook on (#3360B)

The previous post looked at a particular cellular automaton, the so-called Rule 90. When started with a single pixel turned on, it draws a Sierpinski triangle. With random starting pixels, it draws a semi-random pattern that retains features like the Sierpinski triangle.

There are only 256 possible elementary cellular automata, so it's practical to plot them all. I won't list all the images here-you can find them all here-but I will give a few examples to show the variety of patterns they produce. As in the previous post, we imagine our grid rolled up into a cylinder, i.e. we'll wrap around if necessary to find pixels diagonally up to the left and right.

rule8.png
rule18.png
rule29.png
rule30.png
rule108.png
rule129.png

As we discussed in the previous post, the number of a rule comes from what value it assigns to each of eight possible cellular states, turned into a binary number. So it's plausible that binary numbers with more 1's correspond to more black pixels. This is roughly true, though the graph below shows that the situation is more complex than that.

automata_density.png

a_rkd9YHMtg
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments