Article 3SPVY Commutative multiplication of triples

Commutative multiplication of triples

by
John
from John D. Cook on (#3SPVY)

The complex numbers make a field out of pairs of real numbers. The quaternions almost make a field out of four-tuples of numbers, though multiplication is not commutatative. Technically, quaternions form a division algebra.

Frobenius's theorem says only real vector spaces that can be made into division algebras are the real numbers, complex numbers, and quaternions.

So can you multiply triples of real numbers? Sure. Cross product is one way, but there's no "division" analog to cross product. For example, the cross product of any vector with itself is zero, so cross product has lots of zero divisors, non-zero elements that multiply to zero.

Frobenius tells us we can't form triples of real numbers into a division algebra, but can we come closer to a division algebra than we get with cross products? It turns out we can! We can define a multiplication that is commutative, has an identity element, and has no zero divisors. But what's missing? The multiplication doesn't have the distributive property you'd have in a division algebra.

The multiplication operation is complicated to describe. For details see "A Commutative Multiplication of Number Triplets" by Frank R. Pfaff, The American Mathematical Monthly, Vol. 107, No. 2 (Feb., 2000), pp. 156-162.

Related posts:

7Rxf5AepJG4
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments