Article 4YHWW Generalization of power polynomials

Generalization of power polynomials

by
John
from John D. Cook on (#4YHWW)

A while back I wrote about the Mittag-Leffler function which is a sort of generalization of the exponential function. There are also Mittag-Leffler polynomials that are a sort of generalization of the powers of x; more on that shortly.

Recursive definition

The Mittag-Leffler polynomials can be defined recursively by M0(x) = 1
and

ML_poly_recur.svg

for n > 0.

Contrast with orthogonal polynomials

This is an unusual recurrence if you're used to orthogonal polynomials, which come up more often in application. For example, Chebyshev polynomials satisfy

cheby_recur.svg

and Hermite polynomials satisfy

hermite_recur.svg

as I used as an example here.

All orthogonal polynomials satisfy a two-term recurrence like this where the value of each polynomial can be found from the value of the previous two polynomials.

Notice that with orthogonal polynomial recurrences the argument x doesn't change, but the degrees of polynomials do. But with Mittag-Leffler polynomials the opposite is true: there's only one polynomial on the right side, evaluated at three different points: x+1, x, and x-1.

Generalized binomial theorem

Here's the sense in which the Mittag-Leffler polynomials generalize the power function. If we let pn(x) = xn be the power function, then the binomial theorem says

ML_binom1.svg

Something like the binomial theorem holds if we replace pn with Mn:

ML_binom2.svg

Related posts4sKL3Kyp0g4
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments