Article 5E36J Solving for neck length

Solving for neck length

by
John
from John D. Cook on (#5E36J)

A few days ago I wrote about my experiment with a wine bottle and a beer bottle. I blew across the empty bottles and measured the resulting pitch, then compared the result to the pitch you would get in theory if the bottle were a Helmholtz resonator. See the previous post for details.

Tonight I repeated my experiment with an empty water bottle. But I ran into a difficulty immediately: where would you say the neck ends?

kirkland_water.jpg

An ideal Helmholtz resonator is a cylinder on top of a larger sphere. My water bottle is basically a cone on top of a cylinder.

So instead of measuring the neck length L and seeing what pitch was predicted with the formula from the earlier post

helmholtz_frequency.svg

I decided to solve for L and see what neck measurement would be consistent withe Helmholtz resonator approximation. The pitch f was 172 Hz, the neck of the bottle is one inch wide, and the volume is half a liter. This implies L is 10 cm, which is a little less than the height of the conical part of the bottle.

The post Solving for neck length first appeared on John D. Cook.V7qJ6akstZs
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments