Article 5TDM6 The exception case is normal

The exception case is normal

by
John
from John D. Cook on (#5TDM6)

Sine and cosine have power series with simple coefficients, but tangent does not. Students are shocked when they see the power series for tangent because there is no simple expression for the power series coefficients unless you introduce Bernoulli numbers, and there's no simple expression for Bernoulli numbers.

The perception is that sine and cosine are the usual case, and that tangent is exceptional. That's because in homework problems and examples, sine and cosine are the usual case, and tangent is exceptional. But as is often the case, the pedagogically convenient case is the exception rather than the rule.

Of the six common trig functions-sine, cosine, tangent, secant, cosecant, cotangent-sine and cosine are the only ones with power series not involving Bernoulli numbers. The power series for most of the common trig functions require Bernoulli numbers.

Details

The functions cosecant and cotangent have a singularity at 0, so the power series for these functions at 0 are Laurant series rather than Taylor series, i.e. they involve negative as well as positive exponents. We will look at z csc(z) and z cot(z) because multiplying by z removes the singularity.

series_with_bernoulli2.svg

The series for secant doesn't use Bernoulli numbers directly but rather Euler numbers. However, Bernoulli and Euler numbers are closely related.

euler_bernoulli.svg

Related postsThe post The exception case is normal first appeared on John D. Cook.
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments