Decades of Research: the Story of How mRNA Vaccines Were Developed
Long-time Slashdot reader fahrbot-bot wanted to share this New York Times article which makes the point that "The stunning Covid vaccines manufactured by Pfizer-BioNTech and Moderna drew upon long-buried discoveries made in the hopes of ending past epidemics..."They remain a marvel: Even as the Omicron variant fuels a new wave of the pandemic, the vaccines have proved remarkably resilient at defending against severe illness and death. And the manufacturers, Pfizer, BioNTech and Moderna, say that mRNA technology will allow them to adapt the vaccines quickly, to fend off whatever dangerous new version of the virus that evolution brings next. Skeptics have seized on the rapid development of the vaccines - among the most impressive feats of medical science in the modern era - to undermine the public's trust in them. But the breakthroughs behind the vaccines unfolded over decades, little by little, as scientists across the world pursued research in disparate areas, never imagining their work would one day come together to tame the pandemic of the century. The pharmaceutical companies harnessed these findings and engineered a consistent product that could be made at scale, partly with the help of Operation Warp Speed, the Trump administration's multibillion-dollar program to hasten the development and manufacture of vaccines, drugs and diagnostic tests to fight the new virus. For years, though, the scientists who made the vaccines possible scrounged for money and battled public indifference. Their experiments often failed. When the work got too crushing, some of them left it behind. And yet on this unpredictable, zigzagging path, the science slowly built upon itself, squeezing knowledge from failure. The vaccines were possible only because of efforts in three areas. The first began more than 60 years ago with the discovery of mRNA, the genetic molecule that helps cells make proteins. A few decades later, two scientists in Pennsylvania decided to pursue what seemed like a pipe dream: using the molecule to command cells to make tiny pieces of viruses that would strengthen the immune system. The second effort took place in the private sector, as biotechnology companies in Canada in the budding field of gene therapy - the modification or repair of genes to treat diseases - searched for a way to protect fragile genetic molecules so they could be safely delivered to human cells. The third crucial line of inquiry began in the 1990s, when the U.S. government embarked on a multibillion-dollar quest to find a vaccine to prevent AIDS. That effort funded a group of scientists who tried to target the all-important "spikes" on H.I.V. viruses that allow them to invade cells. The work has not resulted in a successful H.I.V. vaccine. But some of these researchers, including Dr. Graham, veered from the mission and eventually unlocked secrets that allowed the spikes on coronaviruses to be mapped instead. In early 2020, these different strands of research came together. The spike of the Covid virus was encoded in mRNA molecules. Those molecules were wrapped in a protective layer of fat and poured into small glass vials. When the shots went in arms less than a year later, recipients' cells responded by producing proteins that resembled the spikes - and that trained the body to attack the coronavirus. The extraordinary tale proved the promise of basic scientific research: that once in a great while, old discoveries can be plucked from obscurity to make history.
Read more of this story at Slashdot.