Article 5XZ6Q Diabetes Successfully Treated Using Ultrasound In Preclinical Study

Diabetes Successfully Treated Using Ultrasound In Preclinical Study

by
BeauHD
from Slashdot on (#5XZ6Q)
Across three different animal models researchers have demonstrated how short bursts of ultrasound targeted at specific clusters of nerves in the liver can effectively lower insulin and glucose levels. New Atlas reports: Reporting in the journal Nature Biomedical Engineering, a team led by GE Research, including investigators from the Yale School of Medicine, UCLA, and the Feinstein Institutes for Medical Research, demonstrated a unique non-invasive ultrasound method designed to stimulate specific sensory nerves in the liver. The technology is called peripheral focused ultrasound stimulation (pFUS) and it allows highly targeted ultrasound pulses to be directed at specific tissue containing nerve endings. "We used this technique to explore stimulation of an area of the liver called the porta hepatis," the researchers explained in a Nature briefing. "This region contains the hepatoportal nerve plexus, which communicates information on glucose and nutrient status to the brain but has been difficult to study as its nerve structures are too small to separately stimulate with implanted electrodes." The newly published study indicates short targeted bursts of pFUS at this area of the liver successfully reversed the onset of hyperglycaemia. The treatment was found to be effective in three separate animal models of diabetes: mice, rats and pigs. [...] The study found just three minutes of focused ultrasound each day was enough to maintain normal blood glucose levels in the diabetic animals. Studies in humans are currently underway to work out whether this method translates from animal studies. But there are other hurdles facing broad clinical deployment of the technique beyond simply proving it works. Current ultrasound tools used to perform this kind of pFUS technique require trained technicians. The researchers suggest the technology exists to simplify and automate these systems in a way that could be used by patients at home, but it will need to be developed before this treatment can be widely deployed.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title Slashdot
Feed Link https://slashdot.org/
Feed Copyright Copyright Slashdot Media. All Rights Reserved.
Reply 0 comments