Article 5Y58G How Apple's Monster M1 Ultra Chip Keeps Moore's Law Alive

How Apple's Monster M1 Ultra Chip Keeps Moore's Law Alive

by
msmash
from Slashdot on (#5Y58G)
By combining two processors into one, the company has squeezed a surprising amount of performance out of silicon. From a report: "UltraFusion gave us the tools we needed to be able to fill up that box with as much compute as we could," Tim Millet, vice president of hardware technologies at Apple, says of the Mac Studio. Benchmarking of the M1 Ultra has shown it to be competitive with the fastest high-end computer chips and graphics processor on the market. Millet says some of the chip's capabilities, such as its potential for running AI applications, will become apparent over time, as developers port over the necessary software libraries. The M1 Ultra is part of a broader industry shift toward more modular chips. Intel is developing a technology that allows different pieces of silicon, dubbed "chiplets," to be stacked on top of one another to create custom designs that do not need to be redesigned from scratch. The company's CEO, Pat Gelsinger, has identified this "advanced packaging" as one pillar of a grand turnaround plan. Intel's competitor AMD is already using a 3D stacking technology from TSMC to build some server and high-end PC chips. This month, Intel, AMD, Samsung, TSMC, and ARM announced a consortium to work on a new standard for chiplet designs. In a more radical approach, the M1 Ultra uses the chiplet concept to connect entire chips together. Apple's new chip is all about increasing overall processing power. "Depending on how you define Moore's law, this approach allows you to create systems that engage many more transistors than what fits on one chip," says Jesus del Alamo, a professor at MIT who researches new chip components. He adds that it is significant that TSMC, at the cutting edge of chipmaking, is looking for new ways to keep performance rising. "Clearly, the chip industry sees that progress in the future is going to come not only from Moore's law but also from creating systems that could be fabricated by different technologies yet to be brought together," he says. "Others are doing similar things, and we certainly see a trend towards more of these chiplet designs," adds Linley Gwennap, author of the Microprocessor Report, an industry newsletter. The rise of modular chipmaking might help boost the performance of future devices, but it could also change the economics of chipmaking. Without Moore's law, a chip with twice the transistors may cost twice as much. "With chiplets, I can still sell you the base chip for, say, $300, the double chip for $600, and the uber-double chip for $1,200," says Todd Austin, an electrical engineer at the University of Michigan.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title Slashdot
Feed Link https://slashdot.org/
Feed Copyright Copyright Slashdot Media. All Rights Reserved.
Reply 0 comments