Article 667T0 Big correlations and big interactions

Big correlations and big interactions

by
John
from John D. Cook on (#667T0)

An outcome cannot be highly correlated with a large number of independent predictors.

This observation has been called the piranha problem. Predictors are compared to piranha fish. If you have a lot of big piranhas in a small pond, they start eating each other. If you have a lot of strong predictors, they predict each other.

In [1] the authors quantify the piranha effect several ways. I'll just quote the first one here. See the paper for several other theorems and commentary on their implications.

If X1, ..., Xp, y are real-valued random variables with finite non-zero variance, then

piranha.svg

So if the left side is large, either because p is large or because some of the correlations are large, then the right side is also large, and so the sum of the interaction terms is large.

Related posts

[1]. The piranha problem: large effects swimming in a small pond. Available on arxiv.

The post Big correlations and big interactions first appeared on John D. Cook.
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments