Article 6GHDR 'Electrocaloric' Heat Pump Could Transform Air Conditioning

'Electrocaloric' Heat Pump Could Transform Air Conditioning

by
msmash
from Slashdot on (#6GHDR)
The use of environmentally damaging gases in air conditioners and refrigerators could become redundant if a new kind of heat pump lives up to its promise. A prototype, described in a study published last week in Science, uses electric fields and a special ceramic instead of alternately vaporizing a refrigerant fluid and condensing it with a compressor to warm or cool air. From a report: The technology combines a number of existing techniques and has "superlative performance," says Neil Mathur, a materials scientist at the University of Cambridge, UK. Emmanuel Defay, a materials scientist at the Luxembourg Institute of Science and Technology in Belvaux, and his collaborators built their experimental device out of a ceramic with a strong electrocaloric effect. Materials that exhibit this effect heat up when exposed to electric fields. In an electrocaloric material, the atoms have an electric polarization -- a slight imbalance in their distribution of electrons, which gives these atoms a 'plus' and a 'minus' pole. When the material is left alone, the polarization of these atoms continuously swivels around in random directions. But when the material is exposed to an electric field, all the electrostatic poles suddenly align, like hair combed in one direction. This transition from disorder to order means that the electrons' entropy -- physicists' way of measuring disorder -- suddenly drops, Defay explains. But the laws of thermodynamics say that the total entropy of a system can never decline, so if it falls somewhere it must increase somewhere else. "The only possibility for the material to get rid of this extra mess is to pour it into the lattice" of its crystal structure, he says. That extra disorder means that the atoms themselves start vibrating faster, resulting in a rise in temperature.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title Slashdot
Feed Link https://slashdot.org/
Feed Copyright Copyright Slashdot Media. All Rights Reserved.
Reply 0 comments