Article 6HMNT Sierpiński’s inequality

Sierpiński’s inequality

by
John
from John D. Cook on (#6HMNT)

Let An, Gn and Hn be the arithmetic mean, geometric mean, and harmonic mean of a set of n numbers.

When n = 2, the arithmetic mean times the harmonic mean is the geometric mean squared. The proof is simple:

sierpinski_ineq2.svg

When n > 2 we no longer have equality. However, W. Sierpiski, perhaps best known for the Sierpiski's triangle, proved that an inequality holds for all n. Given

sierpinski_ineq0.svg

we have the inequality

sierpinski_ineqn.svg

Related posts

[1] W. Sierpinski. Sur une inegalite pour la moyenne alrithmetique, geometrique, et harmonique. Warsch. Sitzunsuber, 2 (1909), pp. 354-357.

The post Sierpiski's inequality first appeared on John D. Cook.
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments