Article 6KZP5 Solar system means

Solar system means

by
John
from John D. Cook on (#6KZP5)

Yesterday I stumbled on the fact that the size of Jupiter is roughly the geometric mean between the sizes of Earth and the Sun. That's not too surprising: in some sense (i.e. on a logarithmic scale) Jupiter is the middle sized object in our solar system.

What I find more surprising is that a systematic search finds mean relationships that are far more accurate. The radius of Jupiter is within 5% of the geometric mean of the radii of the Earth and Sun. But all the mean relations below have an error less than 1%.

radii_means.png

The radius of Mercury equals the geometric mean of the radii of the Moon and Mars, within 0.052%.

The radius of Mars equals the harmonic mean of the radii of the Moon and Jupiter, within 0.08%.

The radius of Uranus equals the arithmetic-geometric mean of the radii of Earth and Saturn, within 0.0018%.

See the links below for more on AM, GM, and AGM.

Now let's look at masses.

planet_mass_means2.png

The mass of Earth is the geometric mean of the masses of Mercury and Neptune, within 2.75%. This is the least accurate approximation in this post.

The mass of Pluto is the harmonic mean of the masses of the Moon and Mars, within 0.7%.

The mass of Uranus is the arithmetic-geometric mean of the masses of of the Moon and Saturn, within 0.54%.

Related postsThe post Solar system means first appeared on John D. Cook.
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments