Article 6MRAH Could Atomically Thin Layers Bring A 19x Energy Jump In Battery Capacitors?

Could Atomically Thin Layers Bring A 19x Energy Jump In Battery Capacitors?

by
EditorDavid
from Slashdot on (#6MRAH)
Researchers believe they've discovered a new material structure that can improve the energy storage of capacitors. The structure allows for storage while improving the efficiency of ultrafast charging and discharging. The new find needs optimization but has the potential to help power electric vehicles.*An anonymous reader shared this report from Popular Mechanics:In a study published in Science, lead author Sang-Hoon Bae, an assistant professor of mechanical engineering and materials science, demonstrates a novel heterostructure that curbs energy loss, enabling capacitors to store more energy and charge rapidly without sacrificing durability... Within capacitors, ferroelectric materials offer high maximum polarization. That's useful for ultra-fast charging and discharging, but it can limit the effectiveness of energy storage or the "relaxation time" of a conductor. "This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems," the study authors write. Bae makes the change - one he unearthed while working on something completely different - by sandwiching 2D and 3D materials in atomically thin layers, using chemical and nonchemical bonds between each layer. He says a thin 3D core inserts between two outer 2D layers to produce a stack that's only 30 nanometers thick, about 1/10th that of an average virus particle... The sandwich structure isn't quite fully conductive or nonconductive. This semiconducting material, then, allows the energy storage, with a density up to 19 times higher than commercially available ferroelectric capacitors, while still achieving 90 percent efficiency - also better than what's currently available. Thanks to long-time Slashdot reader schwit1 for sharing the article.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title Slashdot
Feed Link https://slashdot.org/
Feed Copyright Copyright Slashdot Media. All Rights Reserved.
Reply 0 comments