Geometry of an oblate spheroid
We all live on an oblate spheroid [1], so it could be handy to know a little about oblate spheroids.
EccentricityConventional notation uses a for the equatorial radius and c for the polar radius. Oblate means a > c. The eccentricity e is defined by
For a perfect sphere, a = c and so e = 0. The eccentricity for earth is small, e = 0.08. The eccentricity increases as the polar radius becomes smaller relative to the equatorial radius. For Saturn, the polar radius is 10% less than the equatorial radius, and e = 0.43.
VolumeThe volume of an oblate spheroid is simple:
Clearly we recover the volume of a sphere when a = c.
Surface areaThe surface area is more interesting. The surface of a spheroid is a surface of rotation, and so can easily be derived. It works out to be
It's not immediately clear that we get the area of a sphere as c approaches a, but it becomes clear when we expand the log term in a Taylor series.
This suggests that an oblate spheroid has approximately the same area as a sphere with radius a((a^2 + c^2)/2), with error on the order of e^2.
If we set a = 1 and let c vary from 0 to 1, we can plot how the surface area varies.
Here's the corresponding plot where we use the eccentricity e as our independent variable rather than the polar radius c.
Related posts[1] Not in a yellow submarine as some have suggested.