Article 4HEM1 Snail slime inspires new super-strong reversible glue

Snail slime inspires new super-strong reversible glue

by
David Pescovitz
from on (#4HEM1)
Story Image

Snail slime -- called an epiphragm -- is an incredibly strong yet reversible adhesive.Now, University of Pennsylvania scientists have developed a new kind of glue that employs the same mechanism as the epiphragm. The new material dries like superglue but once wet, it loses its adhesion. For years, scientists have explored adhesions inspired by nature but none have been demonstrated to have the same amount of strength and reversibility. For example, the researchers report that their new adhesive "is 89 times stronger than gecko adhesion." From the University of Pennsylvania:

The breakthrough came one day when Gaoxiang Wu was working on another project that involved a hydrogel made of a polymer called polyhydroxyethylmethacrylate (PHEMA) and noticed its unusual adhesive properties. PHEMA is rubbery when wet but rigid when dry, a quality that makes it useful for contact lenses but also, as Yang's team discovered, for adhesives.

When PHEMA is wet, it conforms to all of the small grooves on a surface, from a tree trunk's distinct ridges to the invisible microporosity of a seemingly smooth wall. This conformal contact is what allows PHEMA to stick to a surface.

To demonstrate just how durable their PHEMA adhesive is, one of Yang's lab members and co-first author, Jason Christopher Jolly, volunteered to suspend himself from a harness held up only by a postage-stamp-sized patch of their adhesive; the material easily held the weight of an entire human body. Based on the lab tests, the team determined that, although PHEMA may not be the strongest adhesive in existence, it is currently the strongest known candidate available for reversible adhesion.

With that kind of power, the snail-slime adhesive could have a big impact on the scientific field as well as in industry. Yang sees durable, reversible adhesives like her PHEMA hydrogel as having massive potential for household products, robotics systems, and industrial assembly.

illustration: Younghee Lee

External Content
Source RSS or Atom Feed
Feed Location https://boingboing.net/feed
Feed Title
Feed Link https://boingboing.net/
Reply 0 comments