Article 544DN Ratio of area to perimeter

Ratio of area to perimeter

by
John
from John D. Cook on (#544DN)

Given a curve of a fixed length, how do you maximize the area inside? This is known as the isoperimetric problem.

The answer is to use a circle. The solution was known long before it was possible to prove; proving that the circle is optimal is surprisingly difficult. I won't give a proof here, but I'll give an illustration.

Consider a regular polygons inscribed in a circle. What happens to the ratio of area to perimeter as the number of sides increases? You might suspect that the ratio increases with the number of sides, because the polygon is becoming more like a circle. This turns out to be correct, and it's not that hard to be precise about what the ratio is as a function of the number of sides.

For a regular polygon inscribed in a circle of radius r,

polygon_areaz.svg

and

polygon_perimeter.svg

For a regular n-gon inscribed in a unit circle, we have

area_perimeter_ratio.svg

We used the double-angle identity for sine in the second line above.

As n increases, the ratio increases toward 1/2, the ratio of the area of a unit circle to its circumference. In a little more detail, the difference between the ratios for a circle and for a regular n-gon goes to zero like O(1/n^2), based on a Taylor expansion for cosine.

Here's a plot of the ratios as a function of the number of sides.

isoperimetric.svg

7KhpTEfZD4s
External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/TheEndeavour?format=xml
Feed Title John D. Cook
Feed Link https://www.johndcook.com/blog
Reply 0 comments