Article 5VC13 Wi-Fi 7 Stomps on the Gas

Wi-Fi 7 Stomps on the Gas

by
Matthew S. Smith
from IEEE Spectrum on (#5VC13)
image.png?id=28861307&width=1200&coordin

Consumer technology is often a story of revolutionary leaps followed by a descent into familiarity. The first computers advanced so quickly that new models went obsolete while they were still on store shelves. Today, any US $500 laptop will be relevant for a decade. A similar story can be told of smartphones, TVs, even cars.

Yet there is one technology that has escaped this trend: Wi-Fi.

Wi-Fi went mainstream with the 802.11g standard in 2003, which improved performance and reliability over earlier 802.11a/b standards. My first 802.11g adapter was a revelation when I installed it in my ThinkPad's PC Card slot. A nearby cafe jumped on the trend, making a midday coffee-and-classwork break possible. That wasn't a thing before 802.11g.

Still, 802.11g often tried your patience. Anything but an ideal connection left me staring at half-loaded Web pages. I soon learned which spots in the cafe had the best connection.

Wi-Fi 6, released in 2019, has maximum speeds of 600 megabits per second for the single band and 9,608 Mb/s on a single network. That's nearly 40 percent as fast as the Wi-Fi 5 standard and more than 175 times as fast as the 802.11g connection I used in 2003.

Such extreme bandwidth is obviously overkill for Web browsing, but it's a necessity for streaming augmented- and virtual-reality content.

Those figures, while impressive, don't tell the whole story. Peak Wi-Fi speeds require support on each device for multiple spatial streams"-that is, for multiplexed channels. Modern Wi-Fi can support up to eight spatial streams, but most consumer-grade Wi-Fi adapters support just one or two streams, to keep costs down. Fortunately, Wi-Fi 6 boosts the performance per stream enough to lift even entry-level Wi-Fi adapters above gigabit speeds.

That's key, as gigabit Internet remains the best available to most people across the globe. I'm lucky enough to have gigabit service, and I've tested quite a few Wi-Fi 6 devices that hurdle this performance bar. It renders gigabit Ethernet nearly obsolete, at least for most home use. And you don't need to spend a fortune: A basic Wi-Fi 6 router like TP-Link's AX73 or Asus's RT-AX3000 can do the trick.

Wi-Fi 6E, released in 2020, further improves the standard with a 6-gigahertz band that appears as a separate connection, just as 2.4- and 5-GHz bands have appeared separately on prior Wi-Fi networks. It's early days for Wi-Fi 6E, so device support is limited, but the routers I've tested were extremely consistent in hitting the peak potential of gigabit Internet.

Wi-Fi 6 already reaches a level of performance that exceeds the Internet service available to most people. Yet the standard isn't letting off the gas. MediaTek plans the first demonstration of Wi-Fi 7 at CES 2022 (the standard is expected to be released in 2024). Wi-Fi 7 is expected to boost maximum bandwidth up to 40 gigabits per second, four times as fast as Wi-Fi 6. Such extreme bandwidth is obviously overkill for Web browsing, but it's a necessity for streaming augmented- and virtual-reality content.

This rapid improvement stands in contrast to the struggles in cellular networking. In theory, 5G can meet or beat the performance of Wi-Fi; Qualcomm claims its latest hardware can hit peak data rates of 20 Gb/s. But the reality often falls short.

The performance of 5G varies between markets. A report from OpenSignal found customers of Taiwan's FarEasTone can expect average download speeds of nearly 448 Mb/s. Verizon and AT&T customers in the United States average just 52.3 Mb/s. 5G is also saddled with confusing and deceptive marketing, such as AT&T's decision to brand some 4G phones as 5GE."

Inconsistent 5G cuts especially deep for consumers because the problem is out of their hands. If you want faster Wi-Fi, you can make it happen by purchasing a new router and, possibly, an adapter for older devices. But if you want faster mobile bandwidth data, tough luck. You could try a new smartphone or switching providers, but both options are expensive, and improvements aren't guaranteed. The best way to improve cellular data is to improve the infrastructure, but that's up to your service provider.

Perhaps cellular providers will get their act together and bring the best 5G speeds beyond dense urban centers. Until then, Wi-Fi is the way to go if you want maximum bandwidth without a cord.

External Content
Source RSS or Atom Feed
Feed Location http://feeds.feedburner.com/IeeeSpectrum
Feed Title IEEE Spectrum
Feed Link https://spectrum.ieee.org/
Reply 0 comments