SpaceX Engineer Says NASA Should Plan For Starship's 'Significant' Capability
technology_dude shares a report from Ars Technica: As part of its Artemis program to return humans to the Moon this decade, NASA has a minimum requirement that its "human landing system" must be able to deliver 865 kg to the lunar surface. This is based on the mass of two crew members and their equipment needed for a short stay. However, in selecting SpaceX's Starship vehicle to serve as its human lander, NASA has chosen a system with a lot more capability. Starship will, in fact, be able to deliver 100 metric tons to the surface of the Moon -- more than 100 times NASA's baseline goal. "Starship can land 100 tons on the lunar surface," said Aarti Matthews, Starship Human Landing System program manager for SpaceX. "And it's really hard to think about what that means in a tangible way. One hundred tons is four fire trucks. It's 100 Moon rovers. My favorite way to explain this to my kids is that it's the weight of more than 11 elephants." Matthews made her comments last week at the ASCENDxTexas space conference in Houston. She was responding to a question from an audience member, Jeff Michel, an engineer at Johnson Space Center. [...] "NASA specified a high-level need, but we, industry, are taking away one of your biggest constraints that you have in designing your payloads and your systems," she said. "It's significantly higher mass. It's essentially infinite volume for the purposes of this conversation. And the cost is an order of magnitude lower. I think that our NASA community, our payload community, should really think about this new capability that's coming online." "We all need to be thinking bigger and better and really inspirationally about what we can do," Matthews said. "Anyone who has worked on hardware design for space application knows you're fighting for kilograms, and sometimes you're fighting for grams, and that takes up so much time and energy. It really limits ultimately what your system can do. That's gone away entirely." [...] "If you, as an engineer, are developing an in-situ resource utilization system, what does your system look like when you have no mass constraint?" she asked. "What about when you have no volume constraint? That would be the exciting thing that I would like to hear from NASA engineers, what they can do with this capability." "The engineer says NASA is not thinking big enough," adds Slashdot reader technology_dude. "I think it's pretty obvious what the payload should be, a nuclear powered boring machine. With flamethrower weapons just in case! Leave a comment for my resume. Maybe I'll call."
Read more of this story at Slashdot.