Article 60EW7 Why Chemists Can't Quit Palladium

Why Chemists Can't Quit Palladium

by
msmash
from Slashdot on (#60EW7)
A retracted paper highlights chemistry's history of trying to avoid the expensive, toxic -- but necessary -- catalyst. From a report: It's hard to find a place on Earth untouched by palladium. The silvery-white metal is a key part of catalytic converters in the world's 1.4 billion cars, which spew specks of palladium into the atmosphere. Mining and other sources add to this pollution. As a result, traces of palladium show up in some of the most remote spots on Earth, from Antarctica to the top of the Greenland ice sheet. Palladium is also practically indispensable for making drugs. That's because catalysts with palladium atoms at their core have an unmatched ability to help stitch together carbon --carbon bonds. This kind of chemical reaction is key to building organic molecules, especially those used in medications. "Every pharmaceutical we produce at some point or another has a palladium-catalysed step in it," says Per-Ola Norrby, a pharmaceutical researcher at drug giant AstraZeneca in Gothenburg, Sweden. Palladium-catalysed reactions are so valuable that, in 2010, their discoverers shared a Nobel prize. But despite its versatility, chemists are trying to move away from palladium. The metal is more expensive than gold, and molecules that contain palladium can also be extremely toxic to humans and wildlife. Chemical manufacturers have to separate out all traces of palladium from their products and carefully dispose of the hazardous waste, which adds extra expense. Thomas Fuchb, a medicinal chemist at the life-sciences company Merck in Darmstadt, Germany, gives the example of a reaction to make 3 kilograms of a drug molecule for which the ingredients cost US$250,000. The palladium catalyst alone adds $100,000; purifying it out of the product another $30,000. Finding less-toxic alternatives to the metal could help to reduce environmental harm from palladium waste and move the chemicals industry towards 'greener' reactions, says Tianning Diao, an organometallic chemist at New York University. Researchers hope to swap palladium for more common metals, such as iron and nickel, or invent metal-free catalysts that sidestep the issue altogether. Several times in the past two decades, researchers have reported finding palladium-free catalysts. But in what has become a recurring pattern for the field, each heralded discovery turned out to be a mistake.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title Slashdot
Feed Link https://slashdot.org/
Feed Copyright Copyright Slashdot Media. All Rights Reserved.
Reply 0 comments