Article 60GC4 Physicists Link Two Time Crystals In Seemingly Impossible Experiment

Physicists Link Two Time Crystals In Seemingly Impossible Experiment

by
BeauHD
from on (#60GC4)
An anonymous reader quotes a report from Live Science: Physicists have created a system of two connected time crystals, which are strange quantum systems that are stuck in an endless loop to which the normal laws of thermodynamics do not apply. By connecting two time crystals together, the physicists hope to use the technology to eventually build a new kind of quantum computer. "It is a rare privilege to explore a completely novel phase of matter," Samuli Autti, the lead scientist on the project from Lancaster University in the United Kingdom, told Live Science in an email. [...] In the new study, Autti and his team used "magnons" to build their time crystal. Magnons are "quasiparticles," which emerge in the collective state of a group of atoms. In this case, the team of physicists took helium-3 -- a helium atom with two protons but only one neutron -- and cooled it to within a ten-thousandth of a degree above absolute zero. At that temperature, the helium-3 transformed into a Bose-Einstein condensate, where all the atoms share a common quantum state and work in concert with each other. In that condensate, all the spins of the electrons in the helium-3 linked up and worked together, generating waves of magnetic energy, the magnons. These waves sloshed back and forth forever, making them a time crystal. Autti's team took two groups of magnons, each one operating as its own time crystal, and brought them close enough to influence each other. The combined system of magnons acted as one time crystal with two different states. Autti's team hopes that their experiments can clarify the relationship between quantum and classical physics. Their goal is to build time crystals that interact with their environments without the quantum states disintegrating, allowing the time crystal to keep running while it is used for something else. It wouldn't mean free energy -- the motion associated with a time crystal doesn't have kinetic energy in the usual sense, but it could be used for quantum computing. Having two states is important, because that is the basis for computation. In classical computer systems, the basic unit of information is a bit, which can take either a 0 or 1 state, while in quantum computing, each "qubit" can be in more than one place at the same time, allowing for much more computing power. The research has been published in the journal Nature Communications.

twitter_icon_large.pngfacebook_icon_large.png

Read more of this story at Slashdot.

External Content
Source RSS or Atom Feed
Feed Location https://rss.slashdot.org/Slashdot/slashdotMain
Feed Title
Feed Link https://rss.slashdot.org/
Reply 0 comments