Have Scientific Breakthroughs Declined?
Some researchers say we've seen a fall in disruptive new discoveries. But we may be entering a golden age of applied science. From a report: 2023 had barely begun when scientists got some jolting news. On Jan. 4, a paper appeared in Nature claiming that disruptive scientific findings have been waning since 1945. Scientists took this as an affront. The New York Times interpreted the study to mean that scientists aren't producing as many "real breakthroughs" or "intellectual leaps" or "pioneering discoveries." That seems paradoxical when each year brings a new crop of exciting findings. In the 12 months following that paper, scientists have listened to the close encounters between supermassive black holes, demonstrated the power of new weight loss drugs and brought to market life-changing gene therapies for sickle cell disease. What the authors of the January paper measured was a changing pattern in the way papers were cited. They created an index of disruptiveness that measured how much a finding marked a break with the past. A more disruptive paper would be cited by many future papers while previous papers in the same area would be cited less -- presumably because they were rendered obsolete. This pattern, they found, has been on a decades-long decline. One of the authors, Russell Funk of the Carlson School of Management at the University of Minnesota, said they wanted to measure how new findings shifted attention away from old ways of doing things. "Science definitely benefits from a cumulative work and studies that come along and refine our existing ideas. But it also benefits from being shaken up every now and then," he said. We're seeing fewer shake-ups now. Funk said he thinks it's related to funding agents taking too few risks. But others say it may only reflect changes in the way scientists cite each other's work. Scientists I talked to said researchers cite papers for many reasons -- including as way to ingratiate themselves with colleagues, mentors or advisers. Papers on techniques get a disproportionate number of citations, as do review articles because they're easier to cite than going back to the original discoveries. Citations in papers are "noisy data" Funk admitted, but there's a lot of it -- millions of papers -- and such data can reveal interesting trends. He agreed, though, that people shouldn't conflate disruption with importance. He gave the example of the LIGO (the Laser Interferometer Gravitational-Wave Observatory), which made a big splash in 2016 by detecting gravitational waves, long ago predicted by Einstein. By his definition it was not disruptive.
Read more of this story at Slashdot.