Trying to fit exponential data
The first difficulty in trying to fit an exponential distribution to data is that the data may not follow an exponential distribution. Nothing grows exponentially forever. Eventually growth slows down. The simplest way growth can slow down is to follow a logistic curve, but fitting a logistic curve has its own problems, as detailed in the previous post.
Suppose you are convinced that whatever you're wanting to model follows an exponential curve, at least over the time scale that you're interested in. This is easier to fit than a logistic curve. If you take the logarithm of the data, you now have a linear regression problem. Linear regression is numerically well-behaved and has been thoroughly explored.
There is a catch, however. When you extrapolate a linear regression, your uncertainly region flares out as you go from observed data to linear predictions based on the observed data. Your uncertainty grows linearly. But remember that we're not working with the data per se; we're working with the logarithm of the data. So on the original scale, the uncertainty flares out exponentially.
The post Trying to fit exponential data first appeared on John D. Cook.