Permutations and tests
Suppose a test asks you to place 10 events in chronological order. Label these events A through J so that chronological order is also alphabetical order.
If a student answers BACDEFGHIJ, then did they make two mistakes or just one? Two events are in the wrong position, but they made one transposition error. The simplest way to grade such a test would be to count the number of events that are in the correct position. Is this the most fair way to grade?
If you decide to count how many transpositions are needed to correct a student's answer, do you count any transposition or only adjacent transpositions? For example, if someone answered JBCDEFGHIA, then transposing the A and the J is enough to put the results in order. But reversing the first and last event seems like a bigger mistake than reversing the first two events. Counting only adjacent transpositions would penalize this mistake more. You would have to swap the J with each of the eight letters between J and A. But it hardly seems that answering JBCDEFGHIA is eight times worse than answering BACDEFGHIJ.
Maybe counting transpositions is too much work. So we just go back to counting how many events are in the right place. But then suppose someone answers JABCDEFGHI. This is completely wrong since every event is in the wrong position. But the student obviously knows something, since the relative order of nearly all of the events is correct. From one perspective there was only one mistake: J comes last, not first.
What is the worst possible answer? Maybe getting the order exactly backward? If you have an odd number of events, then getting the order backward means one event is in the right place, and so that doesn't receive the lowest possible score.
This is an interesting problem beyond grading exams. (As for grading exams, I'd suggest simply not using questions of this type on an exam.) In manufacturing, how serious a mistake is it to reverse two consecutive components versus two distant components? You could also ask the same question when comparing DNA sequences or other digital signals. The best way to assign a distance between the actual and desired sequence would depend entirely on context.