Perovskite mixed into solar ink can print 20.1% efficient solar onto glass or plastic
by noreply@blogger.com (brian wang) from NextBigFuture.com on (#2D5P8)
A U of T Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator.
"Economies of scale have greatly reduced the cost of silicon manufacturing," says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. "Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes."
Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It's an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.
In contrast, perovskite solar cells depend on a layer of tiny crystals - each about 1,000 times smaller than the width of a human hair - made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of 'solar ink', they could be printed onto glass, plastic or other materials using a simple inkjet process.
The new perovskite solar cells have achieved an efficiency of 20.1 per cent and can be manufactured at low temperatures, which reduces the cost and expands the number of possible applications. (Photo: Kevin Soobrian)
Science - Efficient and stable solution-processed planar perovskite solar cells via contact passivation
Read more
"Economies of scale have greatly reduced the cost of silicon manufacturing," says University Professor Ted Sargent (ECE), an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology and senior author on the paper. "Perovskite solar cells can enable us to use techniques already established in the printing industry to produce solar cells at very low cost. Potentially, perovskites and silicon cells can be married to improve efficiency further, but only with advances in low-temperature processes."
Today, virtually all commercial solar cells are made from thin slices of crystalline silicon which must be processed to a very high purity. It's an energy-intensive process, requiring temperatures higher than 1,000 degrees Celsius and large amounts of hazardous solvents.
In contrast, perovskite solar cells depend on a layer of tiny crystals - each about 1,000 times smaller than the width of a human hair - made of low-cost, light-sensitive materials. Because the perovskite raw materials can be mixed into a liquid to form a kind of 'solar ink', they could be printed onto glass, plastic or other materials using a simple inkjet process.
The new perovskite solar cells have achieved an efficiency of 20.1 per cent and can be manufactured at low temperatures, which reduces the cost and expands the number of possible applications. (Photo: Kevin Soobrian)
Science - Efficient and stable solution-processed planar perovskite solar cells via contact passivation
Read more