Immune Therapy Takes A 'BiTE' Out Of Brain Cancer
Arthur T Knackerbracket has found the following story:
Building on their research showing that an exciting new form of immunotherapy for cancer has activity in patients with glioblastoma, the most common and most deadly form of brain cancer, Massachusetts General Hospital (MGH) investigators have created a new method that could make immune therapy more effective again brain tumors and expand its use against other types of solid tumors. Their study is published in the journal Nature Biotechnology.
The treatment, known as chimeric antigen receptor T-cell (CAR T) therapy, involves collecting and genetically modifying a patient's immune-fighting T cells to recognize specific targets (antigens) on the surface of tumors, and then returning them to the patient. Two CAR T cell products have been approved by the FDA for treatment of non-Hodgkin lymphoma and acute lymphoblastic leukemia, respectively cancers of the lymphatic system and blood.
[...] So to boost the effectiveness of CAR T cells, they decided to target a second antigen, the naturally occurring or "wild type" of EGFR. But because EGFR is present in many cells in the body, drugs targeting the protein can cause serious side effects. To overcome this toxicity problem, Maus and colleagues crafted a CAR T cell that can be delivered into the cerebrospinal fluid at the base of the brain. When it gets into the brain, the CAR T then secretes a second type of immunotherapy, called a bi-specific T-cell engager, or "BiTE." BiTEs are antibodies that direct cell-killing T cells to a specific target, somewhat akin to a homing mechanism on a so-called "smart bomb."
[...] When they tested it in models of human glioblastoma, they found that the modified BiTE-secreting CAR Ts eliminated about 80% of the tumors.
The technique holds promise for treating other solid tumors as well, says lead author Bryan D. Choi, MD, from the department of Neurosurgery at MGH.
The biggest barrier they still face in their efforts to bring the research into human clinical trials is financial support, the investigators say.
Bryan D. Choi, et. al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 2019; DOI: 10.1038/s41587-019-0192-1
Read more of this story at SoylentNews.