Electrospun Fibers Weave New Medical Innovations
upstart writes:
Submitted via IRC for Fnord666
Steckl's lab is coming up with new applications for a fabrication process called coaxial electrospinning, which combines two or more materials into a fine fiber for use in industry, textiles or even medicine. The machine pumps two or more liquid polymers into a nozzle that drips like a leaky faucet. Once electric voltage is applied, the drip turns into a spiderweb-fine jet composed of a core of one material surrounded by a sheath of another.
"It looks deceptively simple. But the chemistry is the secret sauce," he said.
Steckl is an Ohio Eminent Scholar and professor in UC's College of Engineering and Applied Science. His latest study, published this month on the cover of the journal ChemPlusChem, outlined the many applications of a manufacturing process that combines the amazing properties of one material with the powerful benefits of another.
Electrospinning was invented in 1902 and was first applied to textiles in the 1930s. But only now are researchers realizing its full potential. Steckl's Nanoelectronics Laboratory has been preoccupied with new combinations of "ingredients" to take advantage of their unique benefits.
"The beauty is you can have combinations of polymers with properties you don't normally find in nature," Steckl said.
For example, researchers can combine a stiff core surrounded by soft, flexible or adhesive material. Or they can create a water-resistant shell surrounding a compound that dissolves quickly in water.
"Or you could put drug molecules on the inside for a treatment surrounded by pain-relief molecules on the outside," he said.
One drawback has been producing enough material for commercial use. But dozens of companies in the United States and around the world are coming up with large-scale production systems for electrospun fibers. Steckl is working with research partners at UC and other research universities to explore the possibilities.
Journal Reference:
Daewoo Han, Andrew J. Steckl. Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications. ChemPlusChem, 2019; 84 (10): 1453 DOI: 10.1002/cplu.201900281
Read more of this story at SoylentNews.