Article 4WG85 In Surprise Breakthrough, Scientists Create Quantum States in Everyday Electronics

In Surprise Breakthrough, Scientists Create Quantum States in Everyday Electronics

by
janrinok
from SoylentNews on (#4WG85)

upstart writes:

Submitted via IRC for Anonymous_Coward

In surprise breakthrough, scientists create quantum states in everyday electronics

After decades of miniaturization, the electronic components we've relied on for computers and modern technologies are now starting to reach fundamental limits. Faced with this challenge, engineers and scientists around the world are turning toward a radically new paradigm: quantum information technologies.

Quantum technology, which harnesses the strange rules that govern particles at the atomic level, is normally thought of as much too delicate to coexist with the electronics we use every day in phones, laptops and cars. However, scientists with the University of Chicago's Pritzker School of Molecular Engineering announced a significant breakthrough: Quantum states can be integrated and controlled in commonly used electronic devices made from silicon carbide.

"The ability to create and control high-performance quantum bits in commercial electronics was a surprise," said lead investigator David Awschalom, the Liew Family Professor in Molecular Engineering at UChicago and a pioneer in quantum technology. "These discoveries have changed the way we think about developing quantum technologies-perhaps we can find a way to use today's electronics to build quantum devices."

In two papers published in Science and Science Advances, Awschalom's group demonstrated they could electrically control quantum states embedded in silicon carbide. The breakthrough could offer a means to more easily design and build quantum electronics-in contrast to using exotic materials scientists usually need to use for quantum experiments, such as superconducting metals, levitated atoms or diamonds.

These quantum states in silicon carbide have the added benefit of emitting single particles of light with a wavelength near the telecommunications band. "This makes them well suited to long-distance transmission through the same fiber-optic network that already transports 90 percent of all international data worldwide," said Awschalom, senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange.

Moreover, these light particles can gain exciting new properties when combined with existing electronics. For example, in the Science Advances paper, the team was able to create what Awschalom called a "quantum FM radio;" in the same way music is transmitted to your car radio, quantum information can be sent over extremely long distances.

"All the theory suggests that in order to achieve good quantum control in a material, it should be pure and free of fluctuating fields," said graduate student Kevin Miao, first author on the paper. "Our results suggest that with proper design, a device can not only mitigate those impurities, but also create additional forms of control that previously were not possible."

Electrical and optical control of single spins integrated in scalable semiconductor devices [$], Science (DOI: 10.1126/science.aax9406)

Electrically driven optical interferometry with spins in silicon carbide [open], Science Advances (DOI: 10.1126/sciadv.aay0527)

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments