Nervous System Doesn't Merely Detect Salmonella, It Defends The Body Against It
Arthur T Knackerbracket has found the following story:
New research by scientists at Harvard Medical School has found that nerves in the guts of mice do not merely sense the presence of Salmonella but actively protect against infection by this dangerous bacterium by deploying two lines of defense.
The study, which will be published Dec. 5 in Cell, casts in a new light the classic view of the nervous system as a mere watchdog that spots danger and alerts the body to its presence. The results show that by directly interfering with Salmonella's ability to infect the intestines, the nervous system is both a detector of danger and a defender against it.
"Our results show the nervous system is not just a simple sensor-and-alert system," said neuro-immunologist Isaac Chiu, the study's lead investigator and assistant professor of immunology in the Blavatnik Institute at Harvard Medical School. "We have found that nerve cells in the gut go above and beyond. They regulate gut immunity, maintain gut homeostasis and provide active protection against infection."
Specifically, the experiments reveal that pain-sensing neurons embedded in the small intestine and beneath cells called Peyer's patches are activated by the presence of Salmonella, a foodborne bacterium responsible for a quarter of all bacterial diarrheal disease worldwide.
Once activated, the nerves use two defensive tactics to prevent the bug from infecting the intestine and spreading throughout the rest of the body. First, they regulate the cellular gates that allow microorganisms and various substances to go in and out of the small intestine. Second, they boost the number of protective gut microbes called SFB (segmented filamentous bacteria), which are part of the microbiome in the small intestine.
Read more of this story at SoylentNews.