A Stripped Helium Star Solves the Massive Black Hole Mystery
upstart writes in with an IRC submission for Bytram:
A stripped helium star solves the massive black hole mystery:
The putative black hole was detected indirectly from the motion of a bright companion star, orbiting an invisible compact object over a period of about 80 days. From new observations, a Belgian team showed that the original measurements were misinterpreted and that the mass of the black hole is, in fact, very uncertain. The most important question, namely how the observed binary system was created, remains unanswered. A crucial aspect is the mass of the visible companion, the hot star LS V+22 25. The more massive this star is, the more massive the black hole has to be to induce the observed motion of the bright star. The latter was considered to be a normal star, eight times more massive than the Sun.
A team of astronomers from Friedrich-Alexander-Universitit Erlangen-Ni1/4rnberg (FAU) and the University of Potsdam had a closer look at the archival spectrum of LS V+22 25, taken by the Keck telescope at Mauna Kea, Hawaii. In particular, they were interested in studying the abundances of the chemical elements on the stellar surface. Interestingly, they detected deviations in the abundances of helium, carbon, nitrogen, and oxygen compared to the standard composition of a young massive star. The observed pattern on the surface showed ashes resulting from the nuclear fusion of hydrogen, a process that only happens deep in the core of young stars and would not be expected to be detected at its surface.
[...] The authors concluded that LS V+22 25 must have interacted with its compact companion in the past. During this episode of mass-transfer, the outer layers of the star were removed and now the stripped helium core is visible, enriched with the ashes from the burning of hydrogen.
Journal Reference:
A. Irrgang, S. Geier, S. Kreuzer, I. Pelisoli, U. Heber. A stripped helium star in the potential black hole binary LB-1. Astronomy & Astrophysics, 2020; 633: L5 DOI: 10.1051/0004-6361/201937343
Read more of this story at SoylentNews.