Article 4YHDZ Technique Reveals Whether Models of Patient Risk are Accurate

Technique Reveals Whether Models of Patient Risk are Accurate

by
martyb
from SoylentNews on (#4YHDZ)

upstart writes in with an IRC submission for SoyCow1337:

Technique reveals whether models of patient risk are accurate:

After a patient has a heart attack or stroke, doctors often use risk models to help guide their treatment. These models can calculate a patient's risk of dying based on factors such as the patient's age, symptoms, and other characteristics.

[...] "Every risk model is evaluated on some dataset of patients, and even if it has high accuracy, it is never 100 percent accurate in practice," says Collin Stultz, a professor of electrical engineering and computer science at MIT and a cardiologist at Massachusetts General Hospital. "There are going to be some patients for which the model will get the wrong answer, and that can be disastrous."

Stultz and his colleagues from MIT, IBM Research, and the University of Massachusetts Medical School have now developed a method that allows them to determine whether a particular model's results can be trusted for a given patient. This could help guide doctors to choose better treatments for those patients, the researchers say.

[...] Computer models that can predict a patient's risk of harmful events, including death, are used widely in medicine. These models are often created by training machine-learning algorithms to analyze patient datasets that include a variety of information about the patients, including their health outcomes.

While these models have high overall accuracy, "very little thought has gone into identifying when a model is likely to fail," Stultz says. "We are trying to create a shift in the way that people think about these machine-learning models. Thinking about when to apply a model is really important because the consequence of being wrong can be fatal."

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments