One Small Grain of Moon Dust, One Giant Leap for Lunar Studies
upstart writes in with an IRC submission for Bytram:
One small grain of moon dust, one giant leap for lunar studies:
"We're analyzing rocks from space, atom by atom," says Jennika Greer, the paper's first author and a PhD student at the Field Museum and University of Chicago. " It's the first time a lunar sample has been studied like this. We're using a technique many geologists haven't even heard of.
"We can apply this technique to samples no one has studied," Philipp Heck, a curator at the Field Museum, associate professor at the University of Chicago, and co-author of the paper, adds. "You're almost guaranteed to find something new or unexpected. This technique has such high sensitivity and resolution, you find things you wouldn't find otherwise and only use up a small bit of the sample."
The technique is called atom probe tomography (APT), and it's normally used by materials scientists working to improve industrial processes like making steel and nanowires. But its ability to analyze tiny amounts of materials makes it a good candidate for studying lunar samples. The Apollo 17 sample contains 111 kilograms (245 pounds) of lunar rocks and soil -- the grand scheme of things, not a whole lot, so researchers have to use it wisely. Greer's analysis only required one single grain of soil, about as wide as a human hair. In that tiny grain, she identified products of space weathering, pure iron, water and helium, that formed through the interactions of the lunar soil with the space environment. Extracting these precious resources from lunar soil could help future astronauts sustain their activities on the Moon.
To study the tiny grain, Greer used a focused beam of charged atoms to carve a tiny, super-sharp tip into its surface. This tip was only a few hundred atoms wide -- for comparison, a sheet of paper is hundreds of thousands of atoms thick. "We can use the expression nanocarpentry," says Philipp Heck. "Like a carpenter shapes wood, we do it at the nanoscale to minerals."
Read more of this story at SoylentNews.