Computer-Based Weather Forecast: New Algorithm Outperforms Mainframe Computer Systems
upstart writes in with an IRC submission for Bytram:
Computer-based weather forecast: New algorithm outperforms mainframe computer systems:
Gerber and Horenko, along with their co-authors, have summarized their concept in an article entitled "Low-cost scalable discretization, prediction, and feature selection for complex systems" recently published in Science Advances.
"This method enables us to carry out tasks on a standard PC that previously would have required a supercomputer," emphasized Horenko. In addition to weather forecasts, the research see numerous possible applications such as in solving classification problems in bioinformatics, image analysis, and medical diagnostics.
[...] SPA or Scalable Probabilistic Approximation is a mathematically-based concept. The method could be useful in various situations that require large volumes of data to be processed automatically, such as in biology, for example, when a large number of cells need to be classified and grouped.
"What is particularly useful about the result is that we can then get an understanding of what characteristics were used to sort the cells," added Gerber. Another potential area of application is neuroscience. Automated analysis of EEG signals could form the basis for assessments of cerebral status. It could even be used in breast cancer diagnosis, as mammography images could be analyzed to predict the results of a possible biopsy.
"The SPA algorithm can be applied in a number of fields, from the Lorenz model to the molecular dynamics of amino acids in water," concluded Horenko. "The process is easier and cheaper and the results are also better compared to those produced by the current state-of-the-art supercomputers."
More Information: S. Gerber et al., Low-cost scalable discretization, prediction, and feature selection for complex systems, Science Advances 6:5, 29 January 2020,DOI:10.1126/sciadv.aaw0961
Read more of this story at SoylentNews.