Breakthrough Made Towards Building the World's Most Powerful Particle Accelerator
upstart writes in with an IRC submission for AnonymousCoward:
Ulsan National Institute of Science and Technology, UNIST, announce a breakthrough made towards building the world's most powerful particle accelerator:
An international team of researchers, affiliated with UNIST has for the first time succeeded in demonstrating the ionization cooling of muons. Regarded as a major step in being able to create the world's most powerful particle accelerator, this new muon accelerator is expected to provide a better understanding of the fundamental constituents of matter.
This breakthrough has been carried out by the Muon Ionization Cooling Experiment (MICE) collaboration, which includes many UK scientists, as well as Professor Moses Chung and his research team in the School of Natural Sciences at UNIST. Their findings have been published in the online version of Nature on February 5, 2020.
"We have succeeded in realizing muon ionization cooling, one of our greatest challenges associated with developing muon accelerators," says Professor Chung. "Achievement of this is considered especially important, as it could change the paradigm of developing the Lepton Collider that could replace the Neutrino Factory or the Large Hadron Collider (LHC)."
[...] To tackle this challenge, the MICE collaboration team succeeded in channelling muons into a small enough volume to be able to study physics in new systems via a method, known as Ionization Cooling, which was previously suggested and developed into theoretically operable schemes in the 1980s.
The results of the experiment, carried out using the MICE muon beam-line at the Science and Technology Facilities Council (STFC) ISIS Neutron and Muon Beam facility on the Harwell Campus in the UK, clearly shows that the phase-space volume occupied by the muon beam can be controlled via the ionization cooling, as predicted by the theory.
MICE collaboraboration. Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature, 2020 DOI: 10.1038/s41586-020-1958-9
Read more of this story at SoylentNews.