Weighing in on the Origin of Heavy Elements
Arthur T Knackerbracket has found the following story:
A long-held mystery in the field of nuclear physics is why the universe is composed of the specific materials we see around us. In other words, why is it made of "this" stuff and not other stuff?
Specifically of interest are the physical processes responsible for producing heavy elements -- like gold, platinum and uranium -- that are thought to happen during neutron star mergers and explosive stellar events.
Scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory led an international nuclear physics experiment conducted at CERN, the European Organization for Nuclear Research, that utilizes novel techniques developed at Argonne to study the nature and origin of heavy elements in the universe. The study may provide critical insights into the processes that work together to create the exotic nuclei, and it will inform models of stellar events and the early universe.
[...] The nuclear physicists in the collaboration are the first to observe the neutron-shell structure of a nucleus with fewer protons than lead and more than 126 neutrons -- "magic numbers" in the field of nuclear physics.
At these magic numbers, of which 8, 20, 28, 50 and 126 are canonical values, nuclei have enhanced stability, much as the noble gases do with closed electron shells. Nuclei with neutrons above the magic number of 126 are largely unexplored because they are difficult to produce. Knowledge of their behavior is crucial for understanding the rapid neutron-capture process, or r-process, that produces many of the heavy elements in the universe.
Read more of this story at SoylentNews.