Being Right-Brained or Left-Brained Comes Down to Molecular Switches
Arthur T Knackerbracket has found the following story:
Scientists may have solved one of the most puzzling and persistent mysteries in neuroscience: why some people are "right-brained" while others are "left-brained."
The answer lies in how certain genes on each side of the brain are switched "on" and "off" through a process called epigenetic regulation. The findings may explain why Parkinson's disease and other neurological disorders frequently affect one side of the body first, a revelation that has far-reaching implications for development of potential future treatments.
The study was led by Van Andel Institute's Viviane Labrie, Ph.D., and published in the journal Genome Biology.
"The mechanisms underlying brain asymmetry have been an elephant in the room for decades," Labrie said. "It's thrilling to finally uncover its cause, particularly given its potential for helping us better understand and, hopefully one day, better treat diseases like Parkinson's."
[...] The findings also give scientists a vital window into the various biological pathways that contribute to symptom asymmetry in Parkinson's, including brain cell development, immune function and cellular communication.
"We all start out with prominent differences between the left and right sides of our brains. As we age, however, our hemispheres become more epigenetically similar. For Parkinson's, this is significant: people whose hemispheres are more alike early in life experienced faster disease progression, while people whose hemispheres were more asymmetric had slower disease progression," Labrie said. "Many of these changes are clustered around genes known to impact Parkinson's risk. There is huge potential to translate these findings into new therapeutic strategies."
Labrie is already starting to look at this phenomenon in other neurological diseases like Alzheimer's.
Peipei Li, Elizabeth Ensink, Sean Lang, Lee Marshall, Meghan Schilthuis, Jared Lamp, Irving Vega, Viviane Labrie. Hemispheric asymmetry in the human brain and in Parkinson's disease is linked to divergent epigenetic patterns in neurons. Genome Biology, 2020; 21 (1) DOI: 10.1186/s13059-020-01960-1
-- submitted from IRC
Read more of this story at SoylentNews.