Art Of Printing Extremely Hard Steels Flawlessly
Arthur T Knackerbracket has found the following story:
For millennia, metallurgists have been meticulously tweaking the ingredients of steel to enhance its properties. As a result, several variants of steel exist today; but one type, called martensitic steel, stands out from its steel cousins as stronger and more cost-effective to produce. Hence, martensitic steels naturally lend themselves to applications in the aerospace, automotive and defense industries, among others, where high-strength, lightweight parts need to be manufactured without boosting the cost.
However, for these and other applications, the metals have to be built into complex structures with minimal loss of strength and durability. Researchers from Texas A&M University, in collaboration with scientists in the Air Force Research Laboratory, have now developed guidelines that allow 3D printing of martensitic steels into very sturdy, defect-free objects of nearly any shape.
"Strong and tough steels have tremendous applications but the strongest ones are usually expensive -- the one exception being martensitic steels that are relatively inexpensive, costing less than a dollar per pound," said Dr. Ibrahim Karaman, Chevron Professor I and head of the Department of Materials Science and Engineering. "We have developed a framework so that 3D printing of these hard steels is possible into any desired geometry and the final object will be virtually defect-free."
Although the procedure developed was initially for martensitic steels, researchers from the Texas A&M said they have made their guidelines general enough so that the same 3D printing pipeline can be used to build intricate objects from other metals and alloys as well.
The findings of the study were reported in the December issue of the journal Acta Materialia.
[...] "Although we started with a focus on 3D printing of martensitic steels, we have since created a more universal printing pipeline," said Karaman. "Also, our guidelines simplify the art of 3D printing metals so that the final product is without porosities, which is an important development for all type of metal additive manufacturing industries that make parts as simple as screws to more complex ones like landing gears, gearboxes or turbines."
Journal Reference:
Raiyan Seede, David Shoukr, Bing Zhang, Austin Whitt, Sean Gibbons, Philip Flater, Alaa Elwany, Raymundo Arroyave, Ibrahim Karaman. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Materialia, 2020; 186: 199 DOI: 10.1016/j.actamat.2019.12.037
Read more of this story at SoylentNews.