Catalyst Opens Door To More Efficient, Environmentally Friendly Ethylene Production
Arthur T Knackerbracket has found the following story:
A research team led by North Carolina State University has engineered a new catalyst that can more efficiently convert ethane into ethylene, which is used in a variety of manufacturing processes. The discovery could be used in a conversion process to drastically reduce ethylene production costs and cut related carbon dioxide emissions by up to 87%.
"Our lab previously proposed a technique for converting ethane into ethylene, and this new redox catalyst makes that technique more energy efficient and less expensive while reducing greenhouse gas emissions," says Yunfei Gao, a postdoctoral scholar at NC State and lead author of a paper on the work. "Ethylene is an important feedstock for the plastics industry, among other uses, so this work could have a significant economic and environmental impact."
[...] "We estimate that the new redox catalyst and technique cut energy requirements by 60-87%," Li says.
"Our technique would require an initial investment in the installation of new, modular chemical reactors, but the jump in efficiency and ability to convert stranded ethane would be significant," Li says.
The paper, "A Molten Carbonate Shell Modified Perovskite Redox Catalyst for Anaerobic Oxidative Dehydrogenation of Ethane," will be published April 24 in the journal Science Advances.
Science Advances 24 Apr 2020:
Vol. 6, no. 17, eaaz9339
DOI: 10.1126/sciadv.aaz9339
Read more of this story at SoylentNews.