Tiny Three-Dimensional Chessboards Could Lead to "Paper Electronics"
upstart writes in with an IRC submission:
Tiny Three-Dimensional Chessboards Could Lead to "Paper Electronics":
Researchers at The Institute of Scientific and Industrial Research at Osaka University introduced a new liquid-phase fabrication method for producing nanocellulose films with multiple axes of alignment. Using 3D-printing methods for increased control, this work may lead to cheaper and more environmentally friendly optical and thermal devices.
[...] Many existing optical devices, including liquid-crystal displays (LCDs) found in older flat-screen televisions, rely on long needle-shaped molecules aligned in the same direction. However, getting fibers to line up in multiple directions on the same device is much more difficult. Having a method that can reliably and cheaply produce optical fibers would accelerate the manufacture of low-cost displays or even "paper electronics" - computers that could be printed from biodegradable materials on demand.
[...] In newly published research from the Institute of Scientific and Industrial Research at Osaka University, nanocellulose was harvested from sea pineapples, a kind of sea squirt. They then used liquid-phase 3D-pattering, which combined the wet spinning of nanofibers with the precision of 3D-printing. A custom-made triaxial robot dispensed a nanocellulose aqueous suspension into an acetone coagulation bath.
[...] "Our findings could aid in the development of next-generation optical materials and paper electronics," says senior author Masaya Nogi. "This could be the start of bottom-up techniques for building sophisticated and energy-efficient optical and thermal materials."
Journal Reference:
Uetani, Kojiro, Koga, Hirotaka, Nogi, Masaya. Checkered Films of Multiaxis Oriented Nanocelluloses by Liquid-Phase Three-Dimensional Patterning, Nanomaterials (DOI: 10.3390/nano10050958)
Read more of this story at SoylentNews.