Article 57AA6 Coronavirus SARS-CoV-2 Spreads More Indoors at Low Humidity

Coronavirus SARS-CoV-2 Spreads More Indoors at Low Humidity

by
martyb
from SoylentNews on (#57AA6)

upstart writes in with an IRC submission:

Coronavirus SARS-CoV-2 spreads more indoors at low humidity :

An Indo-German research team is now pointing out another aspect that has received little attention so far and could become particularly important in the next flu season: Indoor humidity. Physicists at the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig and the CSIR National Physical Laboratory in New Delhi have been studying the physical properties of aerosol particles for years in order to better estimate their effects on air quality or cloud formation.

[...] Result: Air humidity influences the spread of corona viruses indoors in three different ways: (a) the behaviour of microorganisms within the virus droplets, (b) the survival or inactivation of the virus on the surfaces, and (c) the role of dry indoor air in the airborne transmission of viruses. Although, low humidity causes the droplets containing viruses to dry out more quickly, the survivability of the viruses still seems to remain high. The team concludes that other processes are more important for infection: "If the relative humidity of indoor air is below 40 percent, the particles emitted by infected people absorb less water, remain lighter, fly further through the room and are more likely to be inhaled by healthy people. In addition, dry air also makes the mucous membranes in our noses dry and more permeable to viruses," summarizes Dr. Ajit Ahlawat.

[...] At a higher humidity, the droplets grow faster, fall to the ground earlier and can be inhaled less by healthy people. "A humidity level of at least 40 percent in public buildings and local transport would therefore not only reduce the effects of COVID-19, but also of other viral diseases such as seasonal flu. Authorities should include the humidity factor in future indoor guidelines," demands Dr. Sumit Kumar Mishra of CSIR - National Physical Laboratory in New Delhi.

Journal Reference:
Ahlawat, A., Wiedensohler, A. and Mishra, S.K., An Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments [open], Aerosol and Air Quality Research (DOI: 10.4209/aaqr.2020.06.0302)

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments