Researchers Discover Life in Deep Ocean Sediments at or Above Water's Boiling Point
upstart writes:
Researchers discover life in deep ocean sediments at or above water's boiling point:
"Water boils on the (Earth's) surface at 100 degrees Celsius, and we found organisms living in sediments at 120 degrees Celsius," said URI Professor of Oceanography Arthur Spivack, who led the geochemistry efforts of the 2016 expedition organized by the Japan Agency for Marine-Earth Science and Technology and Germany's MARUM-Center for Marine and Environmental Sciences at the University of Bremen. The study was carried out as part of the work of Expedition 370 of the International Ocean Discovery Program.
[...] While this is exciting news on its own, Spivack said the research could point to the possibility of life in harsh environments on other planets.
According to the study, sediments that lie deep below the ocean floor are harsh habitats. Temperature and pressure steadily increase with depth, while the energy supply becomes increasingly scarce. It has only been known for about 30 years that, in spite of these conditions, microorganisms do inhabit the seabed at depths of several kilometers. The deep biosphere is still not well understood, and this brings up fundamental questions: Where are the limits of life, and what factors determine them?
[...] Like the search for life in outer space, determining the limits of life on the Earth is fraught with great technological challenges, the research study says.
"Surprisingly, the microbial population density collapsed at a temperature of only about 45 degrees," says co-chief scientist Fumio Inagaki of JAMSTEC. "It is fascinating - in the high-temperature ocean floor, there are broad depth intervals that are almost lifeless. But then we were able to detect cells and microbial activity again in deeper, even hotter zones - up to a temperature of 120 degrees."
Journal Reference:
Verena B. Heuer, Fumio Inagaki, Yuki Morono, et al. Temperature limits to deep subseafloor life in the Nankai Trough subduction zone [$], Science (DOI: 10.1126/science.abd7934)
Read more of this story at SoylentNews.