Article 5BMWV Atom-Thin Transistor Uses Half the Voltage of Common Semiconductors, Boosts Current Density

Atom-Thin Transistor Uses Half the Voltage of Common Semiconductors, Boosts Current Density

by
Fnord666
from SoylentNews on (#5BMWV)

upstart writes in with an IRC submission:

Atom-thin transistor uses half the voltage of common semiconductors, boosts current density:

University at Buffalo researchers are reporting a new, two-dimensional transistor made of graphene and the compound molybdenum disulfide that could help usher in a new era of computing.

As described in a paper accepted at the 2020 IEEE International Electron Devices Meeting, which is taking place virtually next week, the transistor requires half the voltage of current semiconductors. It also has a current density greater than similar transistors under development.

[...] The transistor is composed of a single layer of graphene and a single layer of molybdenum disulfide, or MoS2, which is a part of a group of compounds known as transition metals chalcogenides. The graphene and MoS2 are stacked together, and the overall thickness of the device is roughly 1 nanometer -- for comparison, a sheet of paper is about 100,000 nanometers.

While most transistors require 60 millivolts for a decade of change in current, this new device operates at 29 millivolts.

[...] An even more important characteristic of the transistor, Li says, is its ability to handle a greater current density compared to conventional transistor technologies based on 2D or 3D channel materials. As described in the study, the transistor can handle 4 microamps per micrometer.

"The transistor illustrates the enormous potential 2D semiconductors and their ability to usher in energy-efficient nanoelectronic devices. This could ultimately lead to advancements in quantum research and development, and help extend Moore's Law," says co-lead author Fei Yao, PhD, assistant professor in the Department of Materials Design and Innovation, a joint program of SEAS and UB's College of Arts of Sciences.

Original Submission

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments