Discovery Boosts Theory that Life on Earth Arose from RNA-DNA Mix
upstart writes in with an IRC submission:
In a study published in the chemistry journal Angewandte Chemie, they demonstrated that a simple compound called diamidophosphate (DAP), which was plausibly present on Earth before life arose, could have chemically knitted together tiny DNA building blocks called deoxynucleosides into strands of primordial DNA.
The finding is the latest in a series of discoveries, over the past several years, pointing to the possibility that DNA and its close chemical cousin RNA arose together as products of similar chemical reactions, and that the first self-replicating molecules -- the first life forms on Earth -- were mixes of the two.
The discovery may also lead to new practical applications in chemistry and biology, but its main significance is that it addresses the age-old question of how life on Earth first arose. In particular, it paves the way for more extensive studies of how self-replicating DNA-RNA mixes could have evolved and spread on the primordial Earth and ultimately seeded the more mature biology of modern organisms.
"This finding is an important step toward the development of a detailed chemical model of how the first life forms originated on Earth," says study senior author Ramanarayanan Krishnamurthy, PhD, associate professor of chemistry at Scripps Research.
The finding also nudges the field of origin-of-life chemistry away from the hypothesis that has dominated it in recent decades: The "RNA World" hypothesis posits that the first replicators were RNA-based, and that DNA arose only later as a product of RNA life forms.
Journal Reference:
Ramanarayanan Krishnamurthy, Eddy I. Jimenez, Clementine Gibard. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA, Angewandte Chemie International Edition (DOI: 10.1002/anie.202015910)
Read more of this story at SoylentNews.