Event Horizon Telescope Captures New View of Black Hole in Polarized Light
upstart writes in with an IRC submission:
Event Horizon Telescope captures new view of black hole in polarized light:
Two years ago, the Event Horizon Telescope (EHT) made headlines with its announcement of the first direct image of a black hole. Science magazine named the image its Breakthrough of the Year. Now the EHT collaboration is back with another groundbreaking result: a new image of the same black hole, this time showing how it looks in polarized light. The ability to measure that polarization for the first time-a signature of magnetic fields at the black hole's edge-is expected to yield fresh insight into how black holes gobble up matter and emit powerful jets from their cores. The new findings were described in three papers published in The Astrophysical Journal Letters.
"This work is a major milestone: the polarization of light carries information that allows us to better understand the physics behind the image we saw in April 2019, which was not possible before," said co-author Ivan Marti-Vidal, coordinator of the EHT Polarimetry Working Group and a researcher at the University of Valencia, Spain. "Unveiling this new polarized-light image required years of work due to the complex techniques involved in obtaining and analyzing the data."
[...] In much the same way that polarized sunglasses reduce glare from bright surfaces, the polarized light around a black hole provides a sharper view of the region around it. In this case, the polarization of light isn't due to special filters (like the lenses in sunglasses) but the presence of magnetic fields in the hot region of space surrounding the black hole. That polarization enables astronomers to map the magnetic field lines at the inner edge and to study the interaction between matter flowing in and being blown outward.
"The observations suggest that the magnetic fields at the black hole's edge are strong enough to push back on the hot gas and help it resist gravity's pull. Only the gas that slips through the field can spiral inwards to the event horizon," said co-author Jason Dexter of the University of Colorado Boulder, who is also coordinator of the EHT Theory Working Group. That means that only theoretical models that incorporate the feature of a strongly magnetized gas accurately describe what the EHT collaboration has observed.
Read more of this story at SoylentNews.