Engineers 3D-Print Personalized, Wireless Wearables that Never Need a Charge
upstart writes:
Engineers 3D-Print Personalized, Wireless Wearables That Never Need a Charge:
University of Arizona engineers have developed a type of wearable they call a "biosymbiotic device," which has several unprecedented benefits. Not only are the devices custom 3D-printed and based on body scans of wearers, but they can operate continuously using a combination of wireless power transfer and compact energy storage. The team, led by Philipp Gutruf, assistant professor of biomedical engineering and Craig M. Berge Faculty Fellow in the College of Engineering, published its findings today in the journal Science Advances.
[...] Current wearable sensors face various limitations. Smartwatches, for example, need to be charged, and they can only gather limited amounts of data due to their placement on the wrist. By using 3D scans of a wearer's body, which can be gathered via methods including MRIs, CT scans and even carefully combined smartphone images, Gutruf and his team can 3D-print custom-fitted devices that wrap around various body parts. Think a virtually unnoticeable, lightweight, breathable, mesh cuff designed specifically for your bicep, calf or torso. The ability to specialize sensor placement allows researchers to measure physiological parameters they otherwise couldn't.
[...] Because these biosymbiotic devices are custom fitted to the wearer, they're also highly sensitive. Gutruf's team tested the device's ability to monitor parameters including temperature and strain while a person jumped, walked on a treadmill and used a rowing machine. In the rowing machine test, subjects wore multiple devices, tracking exercise intensity and the way muscles deformed with fine detail. The devices were accurate enough to detect body temperature changes induced by walking up a single flight of stairs.
Video on YouTube.
Journal Reference:
Tucker Stuart, Kevin Albert, Kasper Ifechukwude, et al. Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. Science Advances, 2021 DOI: 10.1126/sciadv.abj3269
Read more of this story at SoylentNews.