Research Breakthrough Could See HIV Drugs Used to Treat Low-Grade Brain Tumors
Arthur T Knackerbracket has processed the following story:
Drugs developed to treat AIDS and HIV could offer hope to patients diagnosed with the most common form of primary brain tumour.
The breakthrough, co-funded by the charity Brain Tumour Research, is significant because, if further research is conclusive, the anti-retroviral drugs could be prescribed for patients diagnosed with meningioma and acoustic neuroma brain tumours (also known as schwannoma).
More effective approaches are urgently needed as there are very few treatment options for these tumour types which frequently return following surgery and radiotherapy.
Meningioma is the most common form of primary brain tumour. Mostly low-grade, it can become cancerous over time, and develops from cells located in the meninges which protect the brain and spinal cord. Acoustic neuroma is a different type of low-grade, or non-cancerous brain tumour, which develops in nerve-protecting cells called Schwann cells. Both tumours may occur spontaneously, usually in adulthood, or in the hereditary disease Neurofibromatosis type 2 (NF2) in childhood/early adolescence.
Researchers at the Brain Tumour Research Centre at the University of Plymouth have shown previously that a tumour suppressor, named Merlin, contributes to the development of meningioma, acoustic neuroma and ependymoma tumours. It can also contribute to neurofibromatosis type 2 (NF2). Tumour suppressor genes play important roles in normal cells by controlling division or repairing errors in DNA. However, when tumour suppressors do not work properly or are absent, cells can grow out of control, leading to cancer.
In this latest study Dr Sylwia Ammoun, Senior Research Fellow, and her collaborator, Dr Robert Belshaw investigated the role that specific sections of our DNA play in tumour development. Named 'endogenous retrovirus HERV-K', these sections of DNA are relics of ancient infections that affected our primate ancestors, which have become stable elements of human DNA.
Read more of this story at SoylentNews.