Pushing the Potential of Brain-Computer Interfaces
upstart writes:
Pushing the potential of brain-computer interfaces:
Since they came into use by physicians and researchers, Brain-Computer Interfaces (BCIs) or Brain-Machine Interfaces (BMIs) have provided ways to treat neurological disorders and shed light on how the brain functions. As beneficial as they've been, BCIs have potential to go far beyond the technology's current capabilities. In a collaboration between the Yale School of Engineering & Applied Science (SEAS) and Yale School of Medicine, a team of researchers are looking to break through these limitations.
"The goal is to build a class of ultra-low-power devices that are safe for chronic implantation in humans," said Abhishek Bhattacharjee, associate professor of computer science. "Chronic implantation opens the door to a number of clinical uses, ranging from implants to treat epilepsy and movement disorders to designing assistive devices for patients with paralysis, as well as many research uses."
[...] The tricky part about this goal is that these implantable BCIs are limited by how much power they use. Federal and international guidelines state that BCIs must not use more than 15 to 40 milliwatts of power, depending on the depth within the brain tissue that the BCI is implanted. Anything beyond that is unsafe for chronic implantation in humans. Excessive power dissipation causes the devices to overheat, which brings the risk of damaging the cellular tissue of the brain. The SEAS researchers' task, then, is broadening the potential of these devices while staying within a very constrained power limit. They're limiting the power of their own device to 15 milliwatts, which would allow it to be placed deeper into the brain, where power constraints are more stringent.
Read more of this story at SoylentNews.