Breakthrough Takes Us a Step Closer to Real-World Terahertz Technologies
Phoenix666 writes:
Scientists have discovered a new effect in two-dimensional conductive systems that promises improved performance of terahertz detectors.
A recent physics discovery in two-dimensional conductive systems enables a new type of terahertz detector. Terahertz frequencies, which lie between microwave and infrared on the spectrum of electromagnetic radiation, could enable faster, safer, and more effective imaging technologies, as well as much higher speed wireless telecommunications. A lack of effective real-world devices has hampered these developments, but this new breakthrough brings us one step closer to these advanced technologies.
[...] If the lack of usable devices were solved, terahertz radiation could have many useful applications in security, materials science, communications, and medicine. For example, terahertz waves allow the imaging of cancerous tissue that couldn't be seen with the naked eye. They can be employed in new generations of safe and fast airport scanners that make it possible to distinguish medicines from illegal drugs and explosives, and they could be used to enable even faster wireless communications beyond the state-of-the-art.
So, what is the recent discovery about? "We were developing a new type of terahertz detector," says Dr. Wladislaw Michailow, Junior Research Fellow at Trinity College Cambridge, "but when measuring its performance, it turned out that it showed a much stronger signal than should be theoretically expected. So we came up with a new explanation."
This explanation, as the scientists say, lies in the way how light interacts with matter. At high frequencies, matter absorbs light in the form of single particles - photons. This interpretation, first proposed by Einstein, formed the foundation of quantum mechanics and was able to explain the photoelectric effect. This quantum photoexcitation is how light is detected by cameras in our smartphones; it is also what generates electricity from light in solar cells.
Disclaimer: use of terahertz medical scanners may produce the smell of sizzling bacon.
Journal Reference:
"An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection" by Wladislaw Michailow, Peter Spencer, Nikita W. Almond, Stephen J. Kindness, Robert Wallis, Thomas A. Mitchell, Riccardo Degl'Innocenti, Sergey A. Mikhailov, Harvey E. Beere and David A. Ritchie, 15 April 2022, Science Advances.
DOI: 10.1126/sciadv.abi8398/)
Read more of this story at SoylentNews.