Article 6B6MJ Biofriendly Transient Devices Emerge

Biofriendly Transient Devices Emerge

by
hubie
from SoylentNews on (#6B6MJ)

upstart writes:

Biodegradable and disappearing bandages and sensors advance sustainable monitoring and healing:

Researchers at Northwestern University, Evanston, Ill., and the University of Sussex, Brighton, England, have created prototypes of new environmentally sustainable devices that can monitor blood pressure and heartbeat, or heal persistent afflictions such as diabetic ulcers.

The devices are also far more advanced than proof-of-concept stage; the Northwestern device, a transient bandage that uses electrotherapy to both monitor and heal diabetic wounds, is resorbed into the body. It may be ready for human trials within a year to 18 months, according to Guillermo Ameer, director of Northwestern's Center for Advanced Regenerative Engineering. The bandage consists of two small molybdenum electrodes connected to a battery-free power-harvesting unit and a near-field communications module that communicates with control software in a smartphone or tablet.

In a study conducted on diabetic mice published in Science Advances, Ameer and his collaborators, including resorbable electronics pioneer John Rogers, found the device led to 30 percent faster healing than a control group using ordinary bandages.

The device works by transmitting a small current from the outer ringlike electrode, which sits around the wound site, to the inner flower-shaped electrode, which is about 120 micrometers across and sits atop the wound. (The mouse study used about 1 volt of current [sic], and Ameer said that may change in upcoming studies on larger animals.) The current stimulates healthy skin regeneration, the progress of which is measured by current differential between the electrodes. As the wound heals and dries, the current differential [sic] decreases.

Perhaps the most compelling element of the device is the inner electrode. As the wound heals, the regenerated skin grows over the electrode and completely absorbs it. The outer ring electrode and the accompanying power and communications unit are detachable from the inner electrode. Results of the mouse study showed molybdenum concentrations in the body returned to those similar to the control group's within 22 weeks.

Read more of this story at SoylentNews.

External Content
Source RSS or Atom Feed
Feed Location https://soylentnews.org/index.rss
Feed Title SoylentNews
Feed Link https://soylentnews.org/
Feed Copyright Copyright 2014, SoylentNews
Reply 0 comments