Stars Travel Slower at Milky Way's Edge: Galaxy's Core May Contain Less Dark Matter Than We Thought
taylorvich writes:
https://phys.org/news/2024-01-stars-slowly-milky-edge-galaxy.html
By clocking the speed of stars throughout the Milky Way galaxy, MIT physicists have found that stars further out in the galactic disk are traveling more slowly than expected compared to stars that are closer to the galaxy's center. The findings raise a surprising possibility: The Milky Way's gravitational core may be lighter in mass, and contain less dark matter, than previously thought.
The new results are based on the team's analysis of data taken by the Gaia and APOGEE instruments. Gaia is an orbiting space telescope that tracks the precise location, distance, and motion of more than 1 billion stars throughout the Milky Way galaxy, while APOGEE is a ground-based survey.
The physicists analyzed Gaia's measurements of more than 33,000 stars, including some of the farthest stars in the galaxy, and determined each star's "circular velocity," or how fast a star is circling in the galactic disk, given the star's distance from the galaxy's center.
[...] The team translated the new rotation curve into a distribution of dark matter that could explain the outer stars' slow-down, and found the resulting map produced a lighter galactic core than expected. That is, the center of the Milky Way may be less dense, with less dark matter, than scientists have thought.
Read more of this story at SoylentNews.